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The profile of transmembrane-channel expression in neurons is class dependent and a crucial determinant of
neuronal dynamics. Here, a generalization of the experimentally verified exponential integrate-and-fire model
is introduced that includes biophysical, nonlinear gated conductance-based currents, and a spike shape. A
Fokker-Planck-based method is developed that allows for the rapid numerical calculation of steady-state and
linear-response properties for recurrent networks of neurons with gating-variable dynamics slower than that of
the voltage. This limit includes many cases of biological interest, particularly under in vivo conditions of high
synaptic conductance. The utility of the method is illustrated by applying it to two biophysically detailed
models adapted from the literature: an entorhinal layer-II cortical neuron and a neuron featuring both calcium-
activated and voltage-activated spike-frequency-adaptation currents. The framework generalizes to networks
comprised of different neuronal classes and so will allow for the modeling of emergent states in neural tissue
at significantly increased levels of biological detail.
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I. INTRODUCTION

Low-dimensional models have been used from the outset
to better understand the role of voltage-gated currents in neu-
rons �1–3�. While initial reduced models focused on the con-
tinuous dynamics of action potentials, more recent contribu-
tions have replaced the spike with the discontinuous
integrate-and-fire �IF� mechanism, freeing additional vari-
ables to capture properties of subthreshold or adaptation cur-
rents. Early forms of the latter models include the integrate-
and-fire-or-burst model �4,5� with step activation and
inactivation variables for the window calcium current IT, a
linearized resonate-and-fire model with a voltage threshold
and a second-variable reset �6� and a multivariable general-
ized integrate-and-fire model that captured the effects of lin-
earized subthreshold-activated currents �7,8�. Other reduced
neuron models have examined effects of the high-threshold
voltage-gated currents that lead to spike-frequency adapta-
tion, typically treating a second variable as a spike counter
with decay �9–11�.

These early few-variable models featured a low threshold
at the spike onset, around 10–20 mV from rest, of the leaky
integrate-and-fire kind. However, it was demonstrated �12�
through an analysis of a continuous-spike model �13� of the
Hodgkin-Huxley form �14� that a significant improvement on
the basic integrate-and-fire model is achieved by replacing
the low threshold with an exponential runoff to capture the
sodium-channel activation. This nonlinear exponential
integrate-and-fire �EIF� model �12� has recently been shown
experimentally to capture accurately the response properties
of at least two classes of cortical neuron, specifically layer-
five pyramidal cells �15� and fast spiking interneurons �16�.

Around the same time as the development of the EIF, the
two-variable Izhikevich model with a nonlinear quadratic
spiking mechanism was introduced, featuring a second vari-

able that captured phenomenologically both the effects of
subthreshold and adaptation currents �17�. More recently, a
related two-variable adaptive EIF �AdEx� model, with the
quadratic spike replaced with an exponential spiking mecha-
nism, has been proposed �18�. These models, although incor-
porating nonlinear spikes, approximate the gated conduc-
tances by a linear current-based second variable in common
with the majority of previous studies.

In this paper generalized EIF model �GEM� neurons are
introduced that feature an exponential EIF spike generation
�12� with arbitrary spike shape and conductance-based gated
currents with nonlinear voltage-activation profiles and time
constants. It will be demonstrated that both steady-state and
first-order dynamical properties can be derived for a range of
biophysically meaningful cases in which the dynamics of the
gating variables are long compared to those of the voltage.
The approach uses the threshold integration method, devel-
oped for the efficient numerical solution to nonlinear IF
models �19,20� and allows for the first-order response to ar-
bitrarily patterned afferent synaptic conductance input to be
derived for both populations and networks of neurons. It will
be further demonstrated that the discontinuous spiking
mechanism of the integrate-and-fire class of models can be
smoothed by adding a spike shape that may be matched to
experiment. The framework therefore increases significantly
the range of biological details that can be incorporated into
reduced neuron models while still retaining solvability.

The paper is structured as follows. in Sec. II the general
form of the model is defined. Section III demonstrates how
to derive the steady-state properties of a population of GEM
neurons that feature, as an example, a slow depolarization-
activated hyperpolarizing current, and in Sec. IV the first-
order dynamics of a population of the same neurons is de-
rived. In Sec. V a recurrent network of GEM neurons with
filtered delayed inhibitory conductance is examined. Finally,
Sec. VI illustrates the application of the method to two bio-
physically detailed models adapted from the literature. The
Appendixes contain details for the implementation of the*Corresponding author; magnus.richardson@warwick.ac.uk
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threshold integration method and the extension of the
method to neurons with a spike shape.

II. DEFINITION OF THE MODEL

The membrane voltage V of an electrotonically compact
neuron of capacitance C obeys a current-balance equation

C
dV

dt
+ Iion = Isyn, �1�

where Iion is the summed ionic currents and Isyn is the syn-
aptic current. The latter is treated in the Gaussian approxi-
mation in which the tonic and the modulated components of
the excitatory and the inhibitory synaptic conductances ge�t�
and gi�t� are retained but in which fluctuations are approxi-
mated by a stochastic current �conductance fluctuations,
however, can be easily included; see Ref. �19��. The synaptic
current therefore takes the form

Isyn = ge�Ee − V� + gi�Ei − V� + gL��2C/gL��t� , �2�

where Ee=0 mV and Ei=−70 mV are the reversal potentials
of excitation and inhibition. The fluctuation strength is pa-
rametrized by the constant � which, because of the leak con-
ductance gL �see below� included in the fluctuation term, has
units of voltage. In this paper dynamics of the fluctuation
strength � �21–23� are not considered but, again, may be
easily addressed using the methods of Ref. �19�. The quantity
��t� is a Gaussian white noise process with zero mean and a
Dirac-delta autocorrelation ���t���t���=��t− t��.

Writing Ie=ge�Ee−V� for the nonfluctuating excitatory
component of the synaptic current �and similarly for inhibi-
tion Ii� gives the combined nonfluctuating component as

Is = Ie + Ii = gs�Es − V� , �3�

gs = ge + gi, Es =
geEe + giEi

gs
. �4�

In this paper the steady-state synaptic current will often be
parametrized by gs0 and Es0 �the 0 subscript will always be
used to denote a steady-state quantity�. If the underlying ex-
citatory ge0 and inhibitory gi0 conductances are required,
then these can be re-expressed in terms of the gs0 ,Es0 param-
eters

ge0 = gs0
Es0 − Ei

Ee − Ei
, gi0 = gs0

Es0 − Ee

Ei − Ee
�5�

from inverting the relations in equation pair �4�.

Generalized EIF Models — GEMs

A GEM model with a single gating variable will be used
as an example in this paper �for Figs. 1–3 and 5�. The ionic
current has three terms Iion= IL+ Ispike+ Ix. The leak current
takes the standard form IL=gL�V−EL�. The spike-generating
current Ispike is modeled here using the experimentally veri-
fied �15� exponential IF �12� approximation

Ispike = − gL�Te�V−VT�/�T �6�

with VT as the voltage at which the current begins to activate
and �T parametrizing the rapidity at onset. The potassium-
mediated resetting of the spike is modeled by a threshold at
Vth followed by a reset to Vre. The reset need not be instan-
taneous and in a later section it will be shown that a fixed
spike shape and refractory period may be incorporated into
the framework. The third component of the ionic current is a
slow voltage-activated current Ix=gxx�V−Ex� with a gating
variable x�t� obeying a filter equation governed by a voltage-
dependent time constant �x�V� and equilibrium value x��V�.
Combining all these terms for the ionic and the synaptic
currents yields

C
dV

dt
= gL�EL − V� + gL�Te�V−VT�/�T + gxx�Ex − V�

+ gs�Es − V� + gL��2C/gL��t� , �7�

�x
dx

dt
= x� − x �8�

with a threshold at Vth and a reset at Vre completing the
dynamics. Equations �7� and �8� for the voltage and the gat-
ing variable represent a two-dimensional system of coupled
stochastic differential equations. For the example model a
parameter choice is made in which x��V� is depolarization
activated and the current is hyperpolarizing, providing nega-
tive feedback. The values of all parameters are provided in
Appendix C. An example of the evolution of V�t� and x�t�
given by Eqs. �7� and �8� is plotted in Fig. 1�A� and the
voltage dependence of �x and x� can be seen in Fig. 1�B�.

III. POPULATIONS OF NEURONS IN THE STEADY
STATE

Equations �7� and �8� for state variables V and x are sto-
chastic and so it is convenient to move to a probabilistic
representation in which the dynamics of the probability dis-
tribution P�V ,x , t� is considered. The system is fully de-
scribed by a one-plus-two-dimensional Fokker-Planck equa-
tion �24� which, unfortunately, does not appear to be solvable
in closed form. The strategy used in this paper is to consider
cases for which the gating-variable dynamics are long com-
pared to the time scales in the voltage dynamics. This ap-
proach has been taken previously for two-variable linearized
models �7,8,11� and, as will be seen, covers a range of bio-
physically meaningful cases in the context of nonlinear mod-
els.

Under these long-time-constant conditions, the steady-
state distribution of the gating variable will be strongly
peaked at a particular value. This can be seen in a simula-
tional example for Eqs. �7� and �8� in Fig. 1�A�. By replacing
the dynamics of the gating variable x�t� with its average x0,
the steady-state probability density can be reduced to a func-
tion of voltage only P0�V ;x0� with x0 acting as a parameter.
The steady-state gating x0 can be extracted from the model
using a self-consistent approach: it will first be demonstrated
how x0 can be found if the probability density P0�V ;x0� is
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known, and second how the probability density P�V ;x0� can
be calculated if x0 is known. These two results will then be
combined and solved simultaneously.

A. Mean gating from the voltage distribution

An equation for the mean gating variable x0 as a function
of the steady-state voltage distribution will now be derived
using a heuristic argument �a formal derivation is also pos-
sible from the full Fokker-Planck equation following the
method used in a related problem �8��. A steady state is con-
sidered in which, due to the fluctuations in voltage, the gat-
ing variable x�t�=x0+xF�t� is fluctuating around some mean
value x0. If the time constant �x�V� is longer than the corre-
lation time in the voltage dynamics, the fluctuations xF�t�
will tend to average out and therefore will be suppressed.
Substitution into Eq. �8� yields

dxF

dt
=

x��V� − x0 − xF

�x�V�
. �9�

�x has been brought into the denominator of the right-hand
side �RHS� because a steady-state average is sought and
there would otherwise have been a contribution from the
strong correlation between �x and the rate of change in xF.
With this step taken, it is now possible to take the steady-
state average of both sides of Eq. �9�. This yields

0 = � x�

�x
	

0
− x0� 1

�x
	

0
− � xF

�x
	

0
, �10�

where the notation ���0 implies the average of the voltage-
dependent quantity � over the steady-state voltage distribu-
tion P�V ;x0�. The last term in Eq. �10� which contains the
average over xF can be neglected as less significant because
in the long-time-constant limit fluctuations in x are sup-
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FIG. 1. Steady-state properties of a generalized EIF Model �GEM� with a nonlinear depolarization-activated hyperpolarizing current.
�A�–�C� Example with a tonic synaptic drive gs0=2gL, Es0=−30 mV �ge0=1.14gL, gi0=0.86gL�, and fluctuations �=4 mV. �A� Voltage V�t�
and gating variable x�t� �simulations of Eqs. �7� and �8�� with average firing rate of 
18 Hz for the simulations. The probability density
�circles, simulation� is shown in the inset together with x��V�. �B� Voltage profiles of �x�V� and x��V� shown with examples of the weighting
function P0�V ;x0

in� /�x�V� for x0
in=0.14,0.35,0.9. �C� Two schemes for finding x0. Solid line shows x0

out �Eq. �17�� for the full range x0
in=0

→1 with the intersection x0
out=x0

in=0.35 giving the self-consistent solution. This is identical to the simulational average �circle� to two
decimal places. An alternative iterative scheme �dashed line, Eq. �18�� is also shown, with the first two points �squares, x0

in=0.9,0.14� and
fixed point �star, five iterations x0

in=0.35�. These values were used for the example weighting functions of panel �B�. The theoretical
probability density P0�V ;x0=0.35� is plotted in the inset of panel �A� and agrees well with the simulation �circles� with the theoretical
steady-state rate r0=18.1 Hz also close to the simulational value. �D� Steady-state gating variable x0 �solutions of Eq. �17�� and �E�
corresponding firing rates �Eqs. �15� and �16�� for a range of Es0 with fixed gs0=2gL. Theory �lines� and simulation �symbols� are compared
for three fluctuation strengths �. Filled symbols correspond to the example in panels �A�–�C�. Other model parameters are provided in
Appendix C.

DYNAMICS OF POPULATIONS AND NETWORKS OF… PHYSICAL REVIEW E 80, 021928 �2009�

021928-3



pressed. Rearranging the remaining terms gives the steady-
state average of the gating variable as

x0 �
�x�/�x�0

�1/�x�0
, �11�

which is identical to a result of Ref. �9� derived in a related
case of spike-frequency adaptation. Equation �11� gives the
mean steady-state gating in terms of a weighted average of
x��V� with respect to P0�V ;x0� /�x�V�. This comprises the
initially unknown probability density P0�V ,x0�, which is it-
self a function of x0. It will now be demonstrated how this
probability density may be found if x0 is known.

B. Voltage distribution from the mean gating

The approximation made is that the gating variable is
sharply peaked around its average value x0, so that x�t� may
be replaced with x0 in Eq. �7�. This reduces the dynamics of
the two-variable neuron model to a standard one-dimensional
exponential integrate-and-fire model �12� which is solvable.
Calling the steady-state firing rate r0, the continuity equation
�19,24� for the steady-state probability flux J0 obeys

dJ0

dV
= r0���V − Vre� − ��V − Vth�� , �12�

where the Dirac delta functions ensure that the flux of trajec-
tories taken out at threshold are reinserted at the reset. In the
steady state the equation for the flux itself takes the form

− CJ0 = I0P0 + gL�2�P0

�V
, �13�

where I0 is the summed ionic and nonstochastic component
of the synaptic currents Is0 �Eq. �3��

I0 = gL�V − EL� + gL�Te�V−VT�/�T + gxx0�V − Ex�

+ gs0�V − Es0� . �14�

The gradient in the probability density �diffusive term� in Eq.
�13� arises from the stochastic component of the synaptic
current, proportional to � in Eq. �2�.

Equations �12� and �13� fully specify the steady-state dis-
tribution in terms of the firing rate r0. A convenient method
of solution for these equations that also generalizes to the
later time-dependent case is the threshold integration method
�19,20�. Because both J0 and P0 in Eqs. �12� and �13� scale
linearly with the �initially unknown� steady-state rate r0, it
can be scaled out by introducing J0=r0j0, P0=r0p0, so that
the equations become

−
� j0

�V
= − ��V − Vre� , �15�

−
�p0

�V
=

I0

gL�2 p0 +
C

gL�2 j0, �16�

where the conditions at Vth are j0�Vth�=1 and p0�Vth�=0.
These equations can now be solved numerically by discretiz-
ing the voltage range and by integrating backward from

threshold Vth to some lower bound Vlb �the exact value of
which is unimportant as long as it is below a value where
neuronal voltages are typically found�. The steady-state fir-
ing rate is then recovered from the condition r0
=1 /�Vlb

VthdV p0�V�, which in turn yields the correctly normal-
ized probability density P0=r0p0. Details of a convenient
numerical scheme are provided in Appendix A.

C. Self-consistent solution for the steady state

Equation �11� gives the steady-state gating if the probabil-
ity density P0�V ;x0� is known, whereas the solutions to Eqs.
�15� and �16� conversely give the probability density if the
steady-state gating x0 in the current I0 of Eq. �14� is known.
These equations can be solved together by treating x0 as a
parameter in Eqs. �15� and �16�, scanning over its range x0
=0→1 and identifying the self-consistent solutions where
Eq. �11� is satisfied, i.e., when x0

out=x0
in in

x0
out =

�−�
� dV P0�V,x0

in�x��V�/�x�V�
�−�

� dV P0�V,x0
in�/�x�V�

. �17�

This procedure is illustrated in Figs. 1�B� and 1�C� �solid
line�. In Fig. 1�B� the weight functions P0�V ;x0� /�x�V� for
three examples of x0 are plotted together with x��V� and
�x�V� profiles. In Fig. 1�C� the x0

out of Eq. �17� is plotted over
the range of x0

in �solid line�. A single fixed point is seen at the
intersection of x0

out with x0
out=x0

in �dotted line� giving the self-
consistent solution x0=0.35. The corresponding probability
density P0�V ;x0� is compared with simulation in the inset of
Fig. 1�A�. Figures 1�D� and 1�E� show the results for the
steady-state gating x0 and firing rate r0 over a range of syn-
aptic potentials Es0 for three different synaptic fluctuation
strengths. For this particular model the hyperpolarizing gated
current has a significant effect on the steady-state firing rate.
For example, for a standard EIF model �i.e., with gx=0�, the
steady-state rate for Es0=−30 mV, �=4 mV would have
been 88 Hz rather than 18 Hz �filled symbol, Fig. 1�E��.

It is worth noting that an iterative method is often a rather
convenient alternative approach to finding the steady states,
particularly if there is more than one gating variable. This
involves inserting an initial guess x0

in�1� into the RHS of Eq.
�17� to generate a new estimate x0

in�2�=x0
out�x0

in�1��, etc. This is
repeated m times until the convergence

x0
in�m� → x0 �18�

is considered satisfactory. An example of this procedure is
also shown in Fig. 1�C�. In certain cases a damped iteration
method is preferable in which the new value is combined
with a weighted sum of the previous value

x0
in�k+1� = �x0

out�x0
in�k�� + �1 − ��x0

in�k� �19�

with � chosen in the range 0→1 at some value appropriate
for convergence.

D. Richness of GEM dynamics

The analytical framework developed in this paper is ap-
plicable to a subset of GEM neurons, i.e., those with slowly
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gated currents receiving stochastic synaptic drive that, at the
population level, has a single steady-state firing rate. Unre-
stricted GEM neurons, however, share much of the dynami-
cal richness of conductance-based models with continuous
Hodgkin-Huxley-like spikes. For example, for the determin-
istic case, it is known that feedback from gated currents can
yield type II behavior and bistability �8� and, even in the
presence of fluctuations, neurons are not guaranteed to have
a steady state; instabilities can arise from the interactions of
the voltage distribution with the gating-variable activation
profile to yield spontaneous subthreshold oscillations or
bursting. GEM neurons share the rich dynamics of continu-
ous conductance-based models, but their discontinuous spike
renders them considerably more tractable. So, although be-
yond the scope of this paper, it is worth noting that the GEM
framework should allow for analytical headway to be made
on the collective properties of neurons with more complex
dynamics.

IV. POPULATION RESPONSE TO MODULATION

Once the steady-state distribution has been approximated,
it is relatively straightforward to extract the corresponding
first-order response to temporally patterned synaptic drive. A
scenario is first considered in which excitatory synaptic con-
ductance ge�t�=ge0+ ĝe1ei	t is modulated at a frequency
	 /2
. From Eq. �3�

Is = Is0 + Îs1ei	t = gs0�Es0 − V� + ĝe1�Ee − V�ei	t. �20�

To a first-order approximation, this will induce sinusoidal
oscillations at the same frequency in the instantaneous firing
rate and probability density

r � r0 + r̂1ei	t, �21�

P � P0 + P̂1ei	t. �22�

The aim will be to extract the first-order dynamics perturba-
tively from the Fokker-Planck equation, with the steady state
being the zeroth order. In general the density P is a function
of both V and x. However, in the long-time-constant approxi-
mation fluctuations of x�t� are suppressed and the dynamics
of x�t� for a single neuron can be expected to follow x�t�
�x0+ x̂1ei	t on average. In this limit the modulated probabil-
ity density can be well approximated as being a function of

voltage only P̂1�V ; x̂1� but parametrized by the �initially un-
known� gating-variable modulation x̂1.

The next two sections follow a similar approach to that
taken for the steady state: first an approximation for x̂1 will

be derived in terms of the modulated density P̂1�V ; x̂1�, and
second the modulated density will be derived as a function of
x̂1. These results will yield simultaneous equations that can
be solved to give the first-order response to an arbitrarily
patterned synaptic drive.

A. Modulated gating from the distribution

The gating-variable dynamics of a single neuron under
modulation can be written as x�t�=x0+ x̂1ei	t+xF, where x̂1 is

the �complex� amplitude of the induced modulation and xF
are fluctuations around these values. Substitution into the
gating equation �8� gives

dxF

dt
=

x� − x0

�x
− x̂1
 1

�x
+ i	�ei	t −

xF

�x
. �23�

Taking the average of this equation over the probability den-
sity in Eq. �22�, while neglecting the less significant fluctu-
ating terms containing averages over xF, yields an equation
for the first-order modulation of the gating variable

x̂1 �
�x�/�x�1 − x0�1/�x�1

�1/�x�0 + i	
, �24�

where ���1 is shorthand for the integral of ��V�P̂1 over the
voltage range Vlb→Vth and where ���0 is the steady-state
expectation of ��V�. Equation �24� gives x̂1 as a function of

the initially unknown density P̂1�V ; x̂1�.

B. Modulated distribution from the gating

The method for finding P̂1�V ; x̂1� is equivalent to calcu-
lating the first-order response properties of the standard ex-
ponential integrate-and-fire neuron. This problem is solved
�19� and is achieved using a threshold integration method
similar to the steady-state case. The starting points are the
time-dependent continuity equation

�P

�t
+

�J

�V
= r�t����V − Vre� − ��V − Vth�� �25�

and flux equation

− CJ = �Iion − Is�P + gL�2�P

�V
. �26�

The modulated flux J�V , t�=J0�V�+ Ĵ1�V�ei	t and all other
relevant quantities are now substituted into Eqs. �25� and
�26� and terms at first order in the modulations are retained.
The substitution x=x0+ x̂1ei	t in Ix inside Iion is also made.
This yields the following pair of differential equations:

−
� Ĵ1

�V
= i	P̂1 + r̂1���V − Vth� − ��V − Vre�� , �27�

−
� P̂1

�V
=

I0

gL�2 P̂1 +
C

gL�2 Ĵ1 +
gxx̂1

gL

�V − Ex�
�2 P0

+
ĝe1

gL

�V − Ee�
�2 P0, �28�

which can be compared with the steady-state case �15� and
�16�. Note that in Eq. �28� there are two inhomogeneous
components proportional to P0. The first term has a prefactor
gxx̂1 �where x̂1 is initially unknown� and represents the in-
duced modulation of the voltage-activated current by the sec-
ond term, with prefactor ĝe1, which is the modulated excita-
tory synaptic drive.

Because Eq. �28� is linear in gxx̂1 and ĝe1, these quantities
can be scaled out by first solving Eqs. �27� and �28� with
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each inhomogeneous term separately and then appropriately
combining the two solutions. Introducing the dimensionless
conductances �̂e1= ĝe1 /gL and similarly for gx, we can write

the probability density as P̂1=�xx̂1P̂x+ �̂e1P̂e �and analo-

gously for Ĵ1 and r̂1�, where the quantities P̂x , Ĵx , r̂x and

P̂e , Ĵe , r̂e satisfy equations of the form

−
� Ĵ�

�V
= i	P̂� + r̂����V − Vth� − ��V − Vre�� , �29�

−
� P̂�

�V
=

I0

gL�2 P̂� +
C

gL�2 Ĵ� +
�V − E��

�2 P0 �30�

with �=e or �=x fixing the appropriate reversal potential in
the inhomogeneous term of Eq. �30�. Equations of this form
are readily solved �19� by the threshold integration method

by first resolving the quantities Ĵ� and P̂� into two parts

Ĵ� = ĵ� + r̂�ĵr, P̂� = p̂� + r̂�p̂r. �31�

The pair ĵ� , p̂� addresses the inhomogeneous component
proportional to �V−E��P0 and satisfy the equations

−
� ĵ�

�V
= i	p̂�, �32�

−
� p̂�

�V
=

I0

gL�2 p̂� +
C

gL�2 ĵ� +
�V − E��

�2 P0 �33�

with boundary conditions ĵ��Vth�=0, p̂��Vth�=0. The pair

and ĵr , p̂r address the firing threshold at Vth and the reset Vre
and satisfy the equations

−
� ĵr

�V
= i	p̂r − ��V − Vre� , �34�
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FIG. 2. Response of a population of GEM neurons to modulated synaptic conductance. �A� Simulations of voltage, population-averaged
rate, gating-variable, and period-averaged gating-variable for a sinusoidally modulated excitatory conductance ge1=0.057gL at a frequency
of 10 Hz �all other parameters are shared with the steady-state example in panels �A�–�C� of Fig. 1�. �B� Amplitude and phase of the
modulated gating x̂1 �solid line, theory �42�; symbols, simulation; filled symbol 10 Hz example of panel �A��. �C� Corresponding amplitude
and phase of the firing-rate modulation �Eq. �38��. A firing-rate resonance at 
13 Hz and phase zero at 
5 Hz are visible, but absent in the
rate modulation of an equivalent neuron with no gating-variable dynamics �dashed lines, Eq. �38� with �x=0�. �D� The firing-rate filter Ae�t�
for excitatory synaptic conductance modulation derived from inverse Fourier transforming r1�	� �see Eq. �44��. The negative tail is
characteristic of the slow negative feedback generated by this particular voltage-activated current. �E� Population response to patterned
excitatory synaptic drive �solid line, theory Eq. �45�; gray histogram, simulations�. Note the sag or overshoot response to step changes in
conductance. Parameters not provided in the caption to Fig. 1 can be found in Appendix C.
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−
� p̂r

�V
=

I0

gL�2 p̂r +
C

gL�2 ĵr �35�

with boundary conditions ĵr�Vth�=1 �which takes care of the
delta function at Vth present in Eq. �29�� and p̂r�Vth�=0. The
pairs of Eqs. �32� and �33� and Eqs. �34� and �35� can be
integrated from threshold to the lower bound Vlb using the
same integration scheme used for the steady state. The un-
known modulation amplitude r̂� in Eq. �31� is then extracted
from the requirement that the flux vanishes at the lower

bound Ĵ��Vlb�=0, so that

0 = ĵ��Vlb� + r̂�ĵr�Vlb� , �36�

r̂� = − ĵ��Vlb�/ĵr�Vlb� . �37�

Although the lower bound Vlb appears in the fixing of r̂�, its
exact value has no significant effect on the result if it is
chosen to be sufficiently hyperpolarized.

Result �37� for r̂� can now be used, together with equa-

tion set �31� to yield the functions Ĵ� and P̂�. Together, these
give the total probability density and the firing rate

r̂1 = �xx̂1r̂x + �̂e1r̂e, �38�

P̂1 = �xx̂1P̂x + �̂e1P̂e �39�

in terms of x̂1.

C. Self-consistent solution for modulations

Equation �24� for x̂1 and Eq. �39� for P̂1�V ; x̂1� can now be

solved simultaneously. Multiplying the density P̂1 in Eq. �39�
separately by x� /�x and 1 /�x and integrating over the voltage
range yields

�x�/�x�1 = �xx̂1�x�/�x�x + �̂e1�x�/�x�e, �40�

�1/�x�1 = �xx̂1�1/�x�x + �̂e1�1/�x�e �41�

with ���� as the integral �P̂� from Vlb→Vth. Substituting
these two equations into result �24� and rearranging gives the
solution for the modulated amplitude as x̂1= �̂e1x̂e1, where

x̂e1 =
�x�/�x�e − x0�1/�x�e

�1/�x�0 + i	 − �x��x�/�x�x − x0�1/�x�x�
. �42�

From this result the modulated density P̂1 and the firing rate
r̂1 follow directly from Eqs. �38� and �39�.

The results of this procedure are illustrated in Fig. 2 for a
modulation of the excitatory synaptic conductance around
the steady-state case of Figs. 1�A�–1�C�. In Fig. 2�A� simu-
lation time courses of the voltage and the gating variable are
provided for a modulation frequency of 10 Hz. The popula-
tion rate and the gating variable averaged across periods are
also shown with the amplitudes marked. Figure 2�B� shows
the amplitude and the phase of the modulated gating variable
x̂1 from Eq. �42� for a range of frequencies. The correspond-
ing firing-rate modulation amplitude and phase appears in

Fig. 2�C�. A firing-rate resonance and phase zero are visible,
as expected �7� for a neuron with a voltage-activated current
that leads to slow negative feedback. In the absence of the
voltage-gated channel the modulation would be r̂1= �̂e1r̂e
�from setting �x=0 in Eq. �38� for the rate modulation�. This
is also plotted in Fig. 2�C� �dashed line� and exhibits neither
a firing-rate resonance nor a phase zero. Finally, it can be
noted that even for this relatively high level of modulation
�max�r̂1� /r0�9 Hz /18 Hz=50%� agreement between
simulations and the first-order approximation is close.

D. Response to patterned synaptic drive

The rate response r̂1�	� due to oscillatory synaptic drive
at frequency 	 /2
 can be used to derive the first-order re-
sponse to arbitrary synaptic-conductance wave forms ge1�t�.
Scaling out the implicit amplitude �̂e1 in Eq. �38� gives a
frequency-dependent filter

Ãe�	� =
r̂1�	�
�̂e1

= �xx̂e1r̂x + r̂e. �43�

The inverse Fourier transform of which is the time-
dependent filter for the response to excitatory conductance
change

Ae�t� = �
−�

� d	

2

Ãe�	�ei	t. �44�

An example of this filter is plotted in Fig. 2�D� calculated
from the inverse transform of the rate modulation in Fig.
2�C�. Note that after the initial peak an extended negative tail
is visible. The filter Ae�t� can be used to calculate the firing-
rate response to arbitrary drive via the convolution

r�t� = r0 + �
−�

�

dt Ae�t − t��ge1�t��/gL, �45�

where the definition of the filter in Eq. �43� requires that the
excitatory conductance be normalized by the leak conduc-
tance here. Equation �45� can of course also be arrived at by

inverse Fourier transforming the product Ãe�	�g̃e1�	� /gL.
The application of this filter equation is demonstrated in Fig.
2�E�. Sags and rebounds in response to the square-pulse con-
ductances are seen, which is indicative of voltage-activated
currents that provide negative feedback.

E. Response to modulation in the suprathreshold regime

The firing-rate response shown in Fig. 2�C� is for that of a
neuron in a fluctuation-driven firing regime �with Es0
=−30 mV and �=4 mV�. The range of steady-state firing
rates shown in Fig. 1�E� also covers neurons in the suprath-
reshold regime �for Es0
−25.5 mV�. It is worth noting that
the firing-rate response in the suprathreshold regime is mark-
edly different �7� from the fluctuation driven case: in the
low-noise quasideterministic case the intrinsic firing-rate
resonance arising from the gated current is suppressed and
new firing-rate resonances appear at frequencies equivalent
to the steady-state rate r0 and its harmonics �this is also seen
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in neurons without subthreshold currents �25��. For example,
in the GEM neuron the firing-rate response for Es0
=−20 mV and �=4 mV would show a resonance at

80 Hz, a frequency close to the steady-state rate seen in
Fig. 1�E�. These two distinct mechanisms for firing-rate reso-
nances appear to be mutually exclusive, with the fluctuation
strength determining which manifests itself in the rate re-
sponse �7�.

V. SYNAPTICALLY COUPLED RECURRENT NETWORKS

The results of the previous section for uncoupled popula-
tions of neurons may be used to address the case of recur-
rently coupled networks in the mean-field �all-to-all cou-
pling� approximation. This is achieved by allowing the
incoming synaptic drive to be a function of the spike rate of
the network and then solving self-consistently �21,26–28�.

To illustrate the method for neurons with voltage-
activated currents, an inhibitory network will be considered

that receives dynamic excitatory ge
a�t� and steady inhibitory

gi0
a afferent synaptic input as well as recurrent inhibitory syn-

aptic drive gi
r�t� that is a function of the network firing-rate

history

�i

dgi
r

dt
= �icir�t − �d� − gi

r. �46�

Here �i=10 ms is the GABAa filter constant, ci measures the
strength of the recurrent inhibitory conductance, r�t� is the
instantaneous firing rate averaged over all neurons in the
network, and �d=2 ms is the axonal delay.

Oscillations in the afferent excitatory synaptic conduc-
tance will be considered ge

a=ge0+ ĝe1ei	t which will lead to a
modulation r�t�=r0+ r̂1ei	t in the firing rate. This in turn, via
Eq. �46�, will cause a modulation of the recurrent inhibitory
synaptic drive gi

r�t�=gi0
r + ĝi1

r ei	t, where

gi0
r = cir0�i ĝi1

r = ci
e−i	�d

1 + i	�i
r̂1�i. �47�

The combined steady-state component of the inhibitory drive
is therefore

gi0 = gi0
a + cir0�i, �48�

whereas the modulated component in this example stems
only from the recurrency ĝi1= ĝi1

r .

A. Steady state of a recurrent network

The steady-state properties of a mean-field network of
neurons with voltage-activated currents are found by extend-
ing the standard approach �21,26–28� in which the network
steady state is linked to an equivalent population with an
effective afferent drive that incorporates the recurrent com-
ponent.

The method involves first finding a range of solutions for
the steady-state firing rate r0 of a population of uncoupled
neurons receiving the fixed afferent excitatory input ge0

a

=ge0 but with the level of combined inhibition gi0 varied. An
example of a rate-versus-inhibitory-conductance curve is
provided in Fig. 3�A�. A second equation linking gi0 to the
steady-state network firing rate r0 can be found by rearrang-
ing Eq. �48� to yield r0= �gi0−gi0

a � /ci�i. This line is also plot-
ted in Fig. 3�A�. The intersection of the two curves gives the
self-consistent network rate r0 and, from Eq. �48�, the level
of the recurrent component of the steady-state inhibitory
conductance. Figure 3�B� shows good agreement between
the steady-state approximation x0 and a simulation taken
from a single neuron in the network. It can be noted that a
particular choice ci=0.59gL for the recurrent coupling
strength has been made that leads to a network with a firing
rate identical to the uncoupled population case in Figs. 1 and
2. This will allow for a comparison of the dynamical effects
arising from recurrent network coupling and voltage-
activated currents in the network.

B. Dynamics of a recurrent network

The derivation of the response of networks of EIF neu-
rons to oscillatory synaptic drive �20� can be straightfor-
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FIG. 3. A recurrent network of inhibitory GEM neurons with
voltage-activated currents. �A� Construction for finding the steady-
state network rate r0 �for an example ge0

a =1.14gL and gi0
a =0.75gL�.

Network rate and combined inhibitory conductance gi0 are found at
the intersection of the population rate curve parametrized by gi0

�Eqs. �15� and �16�� and the mean-field rate curve �Eq. �48��. The
intersection agrees well with the rate �circle symbol� from a simu-
lation of the recurrent network. �B� Simulated voltage and gating
variables for a neuron in the network as well as the combined inhi-
bition. Dashed lines are the theoretical predictions for x0 and gi0.
�C� The amplitude and �D� the phase of the firing-rate modulation r̂1

�bold line, Eq. �56�; symbols, simulations� for a modulated excita-
tory conductance ĝe1

a =0.057gL. Rate modulation for a population
�dashed line, Eq. �56� with �̂i1=0; see Fig. 2�C�� and an inhibitory
network of neurons without voltage-activated currents �dotted line,
Eq. �56� with �x=0� are also plotted for comparison. The network
coupling ci=0.59gL and fluctuations �=4 mV were chosen to give
a steady state equivalent to that in Fig. 1.
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wardly generalized to include voltage-gated currents. Once

the steady-state properties are known, the modulated flux Ĵ1

and the probability density P̂1 can be found by generalizing
Eqs. �27� and �28� to the recurrent network case

−
� Ĵ1

�V
= i	P̂1 + r̂1���V − Vth� − ��V − Vre�� , �49�

−
� P̂1

�V
=

I0

gL�2 P̂1 +
C

gL�2 Ĵ1 +
gxx̂1

gL

�V − Ex�
�2 P0

+
ĝe1

gL

�V − Ee�
�2 P0 +

cie
−i	�dr̂1�i

gL�1 + i	�1�
�V − Ei�

�2 P0,

�50�

where P0 is the steady-state network density found using the
self-consistent combined inhibitory conductance gi0 in the
solution to equation set �15� and �16�. The modulated prob-
ability density, flux, and firing rate are again resolved into
three components corresponding to the three inhomogeneous
terms in Eq. �50�

P̂1 = �xx̂1P̂x + �̂i1r̂1�iP̂i + �̂e1P̂e, �51�

where �̂i1= �ci /gL�e−i	�d / �1+ i	�i�. The modulated probabil-

ity densities, fluxes, and rates P̂x , Ĵx , r̂x and P̂e , Ĵe , r̂e are iden-
tical to those calculated using Eqs. �29�–�37� for the popula-

tion case. The additional quantities P̂i, Ĵi, and r̂i are found
similarly by setting E� to the reversal potential for inhibition
Ei. Once these terms are extracted using the threshold inte-
gration method, the modulated quantities required for the
self-consistent calculation of x̂1 in Eq. �24� can be written as

�x�/�x�1 = �xx̂1�x�/�x�x + �̂i1r̂1�i�x�/�x�i + �̂e1�x�/�x�e,

�52�

�1/�x�1 = �xx̂1�1/�x�x + �̂i1r̂1�i�1/�x�i + �̂e1�1/�x�e. �53�

From these equations x̂1 can be found in terms of r̂1,

x̂1 = �̂i1r̂1�ix̂i1 + �̂e1x̂e1, �54�

where x̂e1 is given in Eq. �42� and where x̂i1 is the inhibitory
analog with subscripts changed from e→ i. Finally, this form
for x̂1 is substituted into the relation for the firing-rate modu-
lation corresponding to Eq. �51�

r̂1 = �xx̂1r̂x + �̂i1r̂1�ir̂i + �̂e1r̂e, �55�

which can be solved for r̂1 to yield the modulation of the
network rate

r̂1 = �̂e1
r̂e + �xx̂e1r̂x

1 − �̂i1�r̂i�i + �xx̂i1r̂x�i�
, �56�

where all quantities on the RHS excepting �̂e1 ,�x ,�i are
functions of frequency 	. An example of the frequency-
dependent response properties of a network of inhibitory
neurons with voltage-activated currents is shown in Figs.
3�C� and 3�D�. The case of an uncoupled population of neu-
rons �dashed lines, Eq. �56� with �̂i1=0� and an inhibitory

network of neurons without voltage-activated currents �dot-
ted lines, Eq. �56� with �x=0� are also plotted. Both cases
exhibit a firing-rate resonance stemming from two distinct
negative-feedback mechanisms: the voltage-activated current
and the recurrent inhibition. It is interesting to note that here
these two effects combine in the complete network to pro-
duce a more profound firing-rate resonance.

C. Multiple gating variables

The biophysical models to be treated in the next section
feature more than one gating variable, requiring a minor ex-
tension of the methodology developed for the one gating-
variable model of Sec. II. Consider a model with two ionic
currents gxx�V−Ex�+gyy�V−Ey� with gating-variable dy-
namics of the form in Eq. �8�. For multiple gating variables,
the steady-state values x0 and y0 are best found using a
damped iterative approach where, starting from some initial
values x0

in�1� and y0
in�1�, the density P0�V ;x0

in�1� ,y0
in�1�� is de-

rived and used to obtain new estimates x0
in�2� ,y0

in�2� via equa-
tions of forms �11� and �19�.

Once the steady state is found, the modulations x̂1 and ŷ1

follow the form of Eq. �24� but with the average over P̂1 now
including contributions from both gating variables. Hence,
the two-variable generalizations of the modulated current
�38� and density �39� equations are

r̂1 = �xx̂1r̂x + �yŷ1r̂y + �̂e1r̂e, �57�

P̂1 = �xx̂1P̂x + �yŷ1P̂y + �̂e1P̂e, �58�

where the contributions P̂x , P̂y , P̂e and the corresponding rate
modulations r̂x , r̂y , r̂e are found exactly as for the one-
variable case �Eqs. �29� and �30��. The forms required for x̂1
of Eq. �24� are now

�x�/�x�1 = �xx̂1�x�/�x�x + �yŷ1�x�/�x�y + �̂e1�x�/�x�e �59�

and similarly for �1 /�x�1. Substituting this into Eq. �24� and
performing an identical procedure for y yields two simulta-
neous linear equations:

x̂1 = �̂e1x̂e1 + �yŷ1x̂y1, �60�

ŷ1 = �̂e1ŷe1 + �xx̂1ŷx1, �61�

where the terms x̂e1, x̂y1, etc. are identical in form to Eq. �42�
but with appropriate changes to subscripts. The equation pair
�60� and �61� can then be solved to yield

x̂1 = �̂e1
x̂e1 + �yx̂y1ŷe1

1 − �x�yx̂y1ŷx1

, �62�

ŷ1 = �̂e1
ŷe1 + �xŷx1x̂e1

1 − �x�yx̂y1ŷx1

, �63�

from which the modulated rate and the probability density in
Eqs. �57� and �58� are found.

VI. TWO BIOPHYSICAL EXAMPLES

The methods will now be applied to two biophysical mod-
els. The first is an entorhinal cortex layer-II neuron model,
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adapted from Refs. �29–31� and comprises a two-variable Ih
current and a noninactivating persistent sodium current. The
second is a Traub-Miles model of a neuron with spike-
frequency adaptation, modified from �9,32,33�, which fea-
tures two high-threshold potassium currents: the voltage-
dependent IM and the calcium-dependent ImAHP. Before
applying the method to these models, the effect of a spike
shape is addressed.

A. Spike shape and refractoriness

Until now the spike was modeled as an exponential runoff
to a threshold Vth followed by an abrupt reset to Vre. This
reset discontinuity could potentially lead to inaccuracies in
the modeling of currents that have shorter time constants at
high voltages. Furthermore, high-threshold activated cur-
rents, like the spike-frequency adaptation of the Traub-Miles
model, are strongly dependent on the shape of the spike and
an explicit form for the downswing and the refractory period
is required.

The methodology so far developed can be readily ex-
tended to include any deterministic spike shape, starting
from a threshold Vth �that need not to be at the spike peak�
and bringing the voltage around to a final reset Vre �poten-
tially including a subthreshold refractory period� from which
the stochastic dynamics continue. How the method can be
extended to include a spike shape is described in detail in
Appendix B. For the two biophysically detailed models
treated here, a simple spike dynamics is chosen: a linear
repolarization from the spike peak at Vth to a reset Vre �see
Eq. �B3��. This choice is a fair approximation of the down-
swing in many continuous-spike models. The height of the
threshold and the width of the spike were chosen to ensure
that the voltage-impulse delivered to the voltage-activated
currents is the same as for the original models �9,29–33� that
featured continuous Hodgkin-Huxley-like spike dynamics.

B. Entorhinal cortex layer-II neuron

The model, adapted from Refs. �29–31�, features a persis-
tent sodium current IP and a mixed-cation current Ih,

C
dV

dt
+ IL + Ispike + IP + Ih = Isyn. �64�

The action potential has the upswing given by Ispike of Eq.
�6� up until the threshold Vth, which is followed by a deter-
ministic linear voltage downswing to the reset Vre from
which the stochastic voltage-dynamics continue �see Appen-
dix B�. The leak IL and the synaptic Isyn currents are of the
form described in Sec. II.

The persistent sodium current described in �29� has an
instantaneous activation p��V� as well as a very slow inacti-
vation of time scale 
1 s, the latter of which is not included
here, so that

IP = gPp��V − ENa� . �65�

The persistent sodium current is therefore approximated by a
static nonlinearity and does not feature a gating variable that
would require approximation using the self-consistent ap-

proach. The Ih current has two independent gating variables:
one fast f�t� and the other slow s�t�

Ih = �gf f + gss��V − Eh� �66�

with conductances in the ratio gf /gs=1.85. The variables fol-
low the voltage-dependent dynamics of Eq. �8� with all ad-
ditional parameters provided in Appendix C.

The results of the method applied to this model are shown
in Figs. 4�A�–4�F�. The negative feedback provided by the
largely subthreshold Ih current, and boosted by the fast posi-
tive feedback of the IP current, leads to a firing-rate reso-
nance as seen in Fig. 4�D�. The real-time filter �Fig. 4�E��
applied to a patterned excitatory conductance leads to a weak
sag-rebound response to abrupt changes in the presynaptic
rate �Fig. 4�F��.

C. Traub-Miles model of an adapting neuron

The modified Traub-Miles model �9,32,33� has two potas-
sium currents that lead to spike-frequency adaptation: a
voltage-dependent IM and a calcium-dependent ImAHP,

C
dV

dt
+ IL + Ispike + IM + ICa + ImAHP = Isyn. �67�

The spike is again modeled as an exponential rise to thresh-
old �Eq. �6�� followed by a linear downswing to reset �see
Appendix B�. The leak IL and the synaptic Isyn currents are of
the form described in Sec. II.

The voltage-activated potassium current is written as

IM = gMw�V − EK� �68�

and features a gating variable w�t� with the dynamics of Eq.
�8�. The calcium current is modeled with an instantaneous
activation s��V�,

ICa = gCas��V − ECa� �69�

and the related medium-after-hyperpolarization current ImAHP
takes the form

ImAHP = gmAHP
�Ca2+�

30 + �Ca2+�
�V − EK� , �70�

where �Ca2+� is the time-dependent intracellular calcium
concentration. The dynamics of �Ca2+� follows

�Ca
d�Ca2+�

dt
= − 0.16ICa�V� − �Ca2+� �71�

and is of form �8� with �Ca2+��=−0.16ICa�V�. It can therefore
be treated in the framework of voltage-gated currents. The
only minor complication is that the prefactor of the voltage
term in Eq. �70� is nonlinear in �Ca2+� and so, for the steady-
state approximation, for example, the prefactor will be re-
placed with �Ca2+�0 / �30+ �Ca2+�0�, where �Ca2+�0 is calcu-
lated from the probability density in the way described
previously for the cases of many gating variables.

The modulatory response proceeds similarly with Eq. �30�
for �= �Ca2+� being replaced with
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−
� P̂Ca2+

�V
=

I0

gL�2 P̂Ca2+ +
C

gL�2 ĴCa2+

+
30

��Ca2+�0 + 30�2

�V − ECa�
�2 P0, �72�

where the differential of the gating prefactor of Eq. �70� has
been used. �It should be noted that for the case of a spike
shape the corresponding equation involves the replacement
P0→p0r0; see Appendix B for further details�. The modu-
lated probability density may then be written as the sum

P̂1 = �Mŵ1P̂w + �mAHP�Caˆ 2+�1P̂Ca2+ + �̂e1P̂e �73�

and similarly for r̂1 �where �M =gM /gL and �mAHP
=gmAHP /gL�.

A comparison of the slow-gating variable approximation
with simulations is provided in Figs. 4�G�–4�L�. In Fig. 4�G�
it can be seen that the approximation for the steady-state rate
r0 becomes accurate for r0
20 Hz �see the Discussion�. As
is seen in Fig. 4�I� the deviations from the constant-gating-
variable approximation can be significant for a low-rate case.
The negative feedback from the spike-frequency adaptation
produces a profound firing-rate resonance near 40 Hz �Fig.
4�J��, which is reflected in an undershoot in the real-time
filter. These filtering properties lead to a response to pat-
terned excitatory drive �Fig. 4�L�� that strongly accentuates
transients.

VII. DISCUSSION

A generalized exponential integrate-and-fire model
�GEM� was introduced that combines an explicit spiking
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FIG. 4. Two biophysical models. �A�–�F� Entorhinal cortex layer-II neuron with persistent sodium and Ih currents. �A� Steady-state rate
as a function of synaptic potential Es0 �with gs0=2gL� for two fluctuation strengths �lines, theory; symbols, simulations�. �B� Voltage
dependence of time constants and activation plotted with the steady-state density P0 �line, theory; gray histogram, simulation� for the case
Es0=−60 mV, ge0=0.29gL, gi0=1.71gL, and �=8 mV �filled symbol in panel �A��. �C� Voltage and gating-variable time courses for the
same case �dashed lines, steady-state approximations s0 , f0�. �D� Firing-rate response to modulated excitatory synaptic conductance �ge1

=0.057gL� for the example, showing a resonance near 10 Hz. �E� Real-time filter corresponding to the inverse Fourier transform of panel �D�.
A weak undershoot is perceptible. �F� Response to patterned excitatory stimulus �thin line, with ge1�t� /gL three times that of Fig. 2�E��
showing good agreement between theory �bold line� and simulation �gray histogram�. �G�–�L� Modified Traub-Miles neuron with voltage-
activated IM and calcium-activated ImAHP potassium currents. �G� Steady-state voltage as a function of Es0 �with gs0=2gL� for two fluctuation
strengths. �H� Time constants and activation profiles with the steady-state density P0 for the case Es0=−30 mV, ge0=1.14gL, gi0=0.86gL,
and �=10 mV �filled symbol in panel �G��. �I� Voltage and gating-variable time courses for the same case �dashed lines, steady-state
approximations w0 , �Ca2+�0 / �30+ �Ca2+�0��. �J� Firing-rate response to modulated excitatory synaptic conductance �ge1=0.057gL� for this
case, showing a pronounced resonance near 40 Hz. �K� Corresponding real-time filter exhibiting a visible undershoot. �L� Response to a
patterned excitatory stimulus �ge1�t� /gL 1.5 times that of Fig. 2�E��. All other model parameters can be found in Appendix B and C.
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mechanism with nonlinear voltage-activated or calcium-
activated transmembrane current. The framework differs sub-
stantially from traditional Hodgkin-Huxley-type models only
in that the spike dynamics are discontinuous at some level. It
is this discontinuity that is the key differentiator between the
Hodgkin-Huxley-type and the integrate-and-fire-type mod-
els; both can incorporate conductance-based transmembrane
currents.

Like other few-variable reduced neuron models, popula-
tions and networks of GEMs may be efficiently simulated on
a computer, particularly if the nonlinear quantities are pre-
calculated over the required voltage range and lookup tables
are used during the simulation. This is also the case for
Hodgkin-Huxley-type models with continuous spikes. How-
ever, in this paper it was further shown that many important
quantities that characterize the dynamics of networks of
GEMs can be obtained by using the threshold integration
method. These included the firing-rate response curves,
which are required for the stability analysis of network
states, as well as the filters that give the first-order response
of recurrent networks to patterned afferent drive. The frame-
work readily generalizes to the treatment of networks com-
prising multiple neuron types. It should therefore greatly fa-
cilitate the analysis of how neuron-specific current-
expression profiles contribute to activity seen at the tissue
level.

Limitations and extensions of the method

The method relies on a separation of time scales between
the gating kinetics and the underlying voltage dynamics, a
method that has been previously employed with leaky or
perfect-integrator IF models coupled to second variables
�7,8,11�. The approximation is a good one for biologically
relevant cases, as shown in Fig. 4, and becomes increasingly
accurate under naturalistic conditions of high synaptic con-
ductance in which the voltage time constant can become sig-
nificantly reduced.

In the context of adaptation, however, it is the spike pe-
riod that should be small compared to the dynamics of the
additional variables. Given that the typical channel kinetics
are on a time scale on the order of 50–100 ms �9� this re-
quires rather high rates ��20 Hz� for the slow-time-constant
approach to become accurate. The case of r0
27 Hz was
chosen for Figs. 4�G�–4�L� and demonstrate a good agree-
ment, but it can be seen at lower rates that the theoretical
results systematically underestimate the simulated firing rate.
This is due to the validity of the constant gating variable
approximation in this case �see Fig. 4�I�� and is a general
problem for any theoretical approach that replaces fluctuat-
ing spike-triggered currents with an average value. However,
because the method here is equivalent to the first-order solu-
tion to an expansion of the full high-dimensional Fokker-
Planck equation �see Ref. �34� for a similar scenario�, it
would be possible to systematically improve upon the
method by calculating the results to higher order. This would
allow quantitative predictions for the role of adaptation in the
physiologically relevant limit of low firing rates.

Currents with kinetics faster than the voltage dynamics
can also be incorporated into the GEM framework, but the

present study did not consider these cases theoretically. Two
biophysical features that were neglected, and that give rise to
fast kinetics, are the filtered synaptic fluctuations and the
sodium-current inactivation. First, a perturbative method for
accounting for the effects of synaptic AMPA kinetics on the
firing rate of quadratic IF neurons has already been devel-
oped �34�. The general observation was that, unlike for the
leaky IF case with a low spike threshold, the transition from
white to colored noise for nonlinear IF models does not pro-
duce qualitatively new scaling behavior, at least for the high-
frequency response. Nevertheless, it would be worth repeat-
ing the analysis of Ref. �34� for the EIF so as to derive the
corresponding analytical forms for the firing rate and the
probability density. Second, the case of sodium-current inac-
tivation �the Hodgkin-Huxley h gating variable� does not yet
appear to have been treated analytically in the context of
stochastic voltage dynamics. It has already been identified as
a source for the variability of the spike threshold �35� in
different classes of neurons. The development of a tractable
model of this mechanism would considerably increase our
understanding of the response properties of neurons in the
region of action-potential generation.
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APPENDIX A

1. Threshold integration method

Threshold integration �19,20� provides a direct route to
numerical solutions of the Fokker-Planck equations that de-
scribe integrate-and-fire neurons. The method splits the
second-order Fokker-Planck equation into two first-order
equations for the probability flux and density which, after
scaling, may be solved by integrating from the voltage
threshold Vth to some lower bound Vlb. The advantage of the
method comes from the fact that the boundary conditions at
threshold and reset are automatically accounted for. In this
section the method will be described in detail, but please
note that all code used in this paper is freely available from
the author.

The voltage range is discretized into steps �, so that
V�k�=Vlb+k� and Vth=V�n�=Vlb+n�. Here the lower bound
Vlb is chosen, so that the probability of finding a neuron with
a voltage near Vlb is vanishingly small �typically Vlb
=−100 mV�. It is also convenient to choose the step size �,
so that the reset voltage Vre falls on a lattice point Vre=Vlb
+kre�, where kre is an integer.

Before going on to describe the method, an integration
algorithm with good convergence properties is first provided.
Both steady-state and modulatory cases involve integrating
equations for probability densities that are of the form

−
dP

dV
= GP + H , �A1�

where G and H are functions of voltage and where H in-
cludes terms proportional to the flux and potentially the
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steady-state density �see, for example, Eqs. �16�, �33�, and
�35��. For the EIF model G contains terms that are exponen-
tially large for V
VT and so a naive forward-Euler scheme
would require a correspondingly small � for good conver-
gence. For this reason it proves useful to first solve Eq. �A1�
for P in terms of G and H between V�k� and V�k−1� as follows:

P�k−1� = P�k� exp
�
V�k−1�

V�k�

GdV�
+ �

V�k−1�

V�k�

dV H exp
�
V�k−1�

V

GdV�� �A2�

=P�k���k� + �H�k���k� �A3�

plus corrections of order �2 and where

��k� = e�G�k�
, ��k� =

e�G�k�
− 1

�G�k� . �A4�

Equation �A3� is the integration scheme used throughout this
paper for the integration of probability densities backward
from threshold. Finally, as a minor technical point for nu-
merical implementations, it should be noted that for certain
parameter choices it is possible that G�k�=0 at some k. In this
case the numerator and the denominator of ��k� vanish and
��k�=1.

2. Threshold integration for the steady state

The discretized equations �15� and �16� are integrated
backward from threshold Vth where k=n to the lower bound
Vlb where k=0 with the boundary conditions at threshold
being j0

�n�=1 and p0
�n�=0,

j0
�k−1� = j0

�k� − �k,kre+1
, �A5�

p0
�k−1� = p0

�k���k� + �
Cj0

�k�

gL�2��k�. �A6�

The Kronecker delta � j,k takes the value � j,k=1 if j=k and is
zero otherwise. After integration of j0 and p0 from Vth to Vlb,
the steady-state rate is recovered from the condition r0
=1 /�k=1

n �p0
�k�, which in turn yields the correctly normalized

density P0=r0p0.

3. Threshold integration for modulations

To obtain the functions Ĵ� and P̂� that comprise the
modulated response the solutions of two pairs of equations,
Eqs. �32� and �33� and Eqs. �34� and �35�, must be found.

The first pair has threshold conditions ĵ�
�n�=0 and p̂�

�n�=0 and
discretized forms

ĵ�
�k−1� = ĵ�

�k� + �i	p̂�
�k�, �A7�

p̂�
�k−1� = p̂�

�k���k� + �
Cĵ�

�k�

gL�2��k� + �
C

�2 �V − E��P0
�k���k�,

�A8�

where P0
�k�=r0p0

�k� is the normalized steady-state density. For

the second pair of equations, the initial conditions are ĵ�
�n�

=1 and p̂�
�n�=0 and the discretized forms are

ĵr
�k−1� = ĵr

�k� + �i	p̂r
�k� − �k,kre+1

, �A9�

p̂r
�k−1� = p̂r

�k���k� + �
C

gL�2 ĵr
�k���k�. �A10�

These two pairs of equations are integrated from threshold to
the lower bound and then the zero-flux condition in Eq. �37�
is used to extract the modulated rate

r̂� = − ĵ�
�0�/ĵr

�0�. �A11�

This rate modulation then gives the flux Ĵ� and probability-

density P̂� modulations via equation pair �31�.

APPENDIX B

1. Spike shape and refractory period

The exponential IF model �12� improves upon the leaky
IF model by incorporating the sodium-channel activation that
initiates the spike. The potassium-mediated spike downswing
is treated as a discontinuous reset from threshold Vth to Vre.
A refractory period can be included, typically by waiting
some fixed time between when the threshold is reached and
when the dynamics eventually continues from the reset. For
neurons without voltage-gated channels what the voltage
does during the refractory period is irrelevant. However, in
the presence of such currents the shape of the spike can have
a significant impact on dynamics—particularly for high-
threshold frequency-adaptation currents. It is now demon-
strated, using the example model of Sec. II, how an explicit
spike shape may be included into the formalism of EIF neu-
rons with voltage-gated currents.

2. Discontinuous dynamics

It is assumed that neurons evolve under a stochastic dy-
namics until the spike threshold Vth is reached �this need not
be the peak of the spike�. From this point the dynamics be-
comes deterministic, following a fixed spike shape, and
eventually bringing the neuronal voltage to the reset Vre after
a time �ref has elapsed. Over this period any voltage-gated
variables continue to respond to the voltage in the usual way.
This “pasting on” of a voltage-spike template is in the spirit
of the spike-response model formalism �36,37� and is quite
general; the shape need not be monotonic in voltage but
might, for example, start from the region of the spike where
the initial exponential begins to be dominated by additional
terms and the EIF approximation loses validity �see the ex-
perimental data in the inset of Fig. 2 in Ref. �15��. This
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formalism will allow for accurate fits to experimentally mea-
sured spike dynamics.

For neurons with a spike shape the probability density
P�V , t� for the voltage will have two components:

P�V,t� = ��V,t� + �ref�V,t� , �B1�

where ��V , t� is the density of active nonrefractory neurons
�undergoing stochastic dynamics� and �ref�V , t� is the density
of those neurons that are currently refractory �on the deter-
ministic component of the spike�. The last contribution can
be written in the form

�ref�V,t� = �
0

�ref

ds r�t − s��„V − Vsp�s�… , �B2�

where Vsp is the deterministic spike trajectory. Here, for rea-
sons of clarity, a monotonic linear trajectory from threshold
to reset will be used as an example,

Vsp�t� = Vth −
t

�ref
�Vth − Vre� , �B3�

which provides a reasonable fit to the spike downswing of
the Wang-Buszaki model �13�.

3. Steady-state population of refractory neurons

The steady-state rate r0 and the probability density P0 for
refractory neurons with voltage-gated currents can be related
to the nonrefractory case with instantaneous reset treated in
Secs. III–V. The average period for the refractory case is �ref
longer than for the nonrefractory case because it includes the
additional spike dynamics, and so

r0 =
1

�Vlb

Vthp0dV + �ref

, �B4�

where p0 is given by the solution of equation pair �15� and
�16� with the �still unknown� steady-state gating x0. As be-
fore, x0 needs to be calculated self-consistently using the
steady-state form of Eq. �B1� for the probability density

P0 = r0p0 +
r0�ref

�Vth − Vre�
��V − Vre� �B5�

for V�Vth, where r0p0=�0 is the density of active neurons
�calculated from Eqs. �15� and �16�� and where the second
term on the right-hand side in the above equation is the den-
sity of refractory neurons calculated from Eqs. �B2� and �B3�
in the steady-state. This steady-state density �B5� is then cal-
culated over a range of x0 �which parametrizes the p0 term in
Eq. �B5�� until x0

out=x0
in in relation �17� is satisfied. This

yields the self-consistent gating x0, the probability density
P0, and the firing rate r0 for the steady-state refractory case.
The steady-state rates and the probability density of a refrac-
tory neuron are shown in Figs. 5�A� and 5�B� together with a
voltage time course in which the spike shape can be seen.

4. Modulatory response for the refractory case

The response to modulation for neurons with a spike
shape requires some minor alterations to the corresponding

nonrefractory response. Modulated excitatory synaptic con-
ductance is again used as an example. From Eq. �B1� the
first-order time-dependent probability density is resolved
into active �̂1 and refractory �̂ref1 components. The active
component can be found by separating it into densities re-
lated to modulations of the gating variable and the excitatory
drive

r̂1 = �xx̂1r̂x + �̂e1r̂e, �B6�

�̂1 = �xx̂1�̂x + �̂e1�̂e. �B7�

The quantities �̂� and r̂� with �=e ,x have been previously
derived in Ref. �20� and are the solutions to

−
� Ĵ�

�V
= i	�̂� + r̂����V − Vth� − e−i	�ref��V − Vre�� ,

�B8�

−
��̂�

�V
=

I0

gL�2 �̂� +
C

gL�2 Ĵ� +
�V − E��

�2 r0p0, �B9�

where it should be noted that the inhomogeneous term in Eq.
�B9� is proportional to the steady-state density r0p0 of the
active neurons only. These equations are solved using a simi-
lar threshold integration method as in Eqs. �31�–�37� with the
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FIG. 5. A population of GEM neurons with spike shape �Eq.
�B3�� of width �ref =5 ms. �A� Steady-state rate as a function of
excitatory-inhibitory balance Es0 with �=4 mV and gs0=2gL �bold
line, theory; symbols, simulation; dashed line, nonrefractory case of
Fig. 1�E��. �B� Steady-state density when Es0=−30 mV �bold line,
theory; symbols, simulation�. A voltage time course is shown below
in which the spike shape is discernible. �C� The rate amplitude and
�D� the phase in response to modulated excitatory conductance
�bold line, theory; symbols, simulation; dashed line, nonrefractory
case of Fig. 2�C��. Apart from the spike shape, all other parameters
are identical to the corresponding cases in Figs. 1 and 2.
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probability density P0 replaced with r0p0 in Eq. �33� and
with the delta function in Eq. �34� now multiplied by the
factor e−i	�ref. The solutions of these equations yield all the
quantities required for the firing-rate modulation r̂1 �Eq.
�B6�� and the active component of the modulated probability
density �̂1 �Eq. �B7�� except that x̂1 still remains to be found.
To extract this quantity requires the full probability density

modulation P̂1. This will include the contribution from the
deterministic component of the spike �̂ref1=�refr̂1�̂sp where,
for the postspike form in Eq. �B3�,

�̂sp =
e−i	�ref�Vth−V�/�Vth−Vre�

�Vth − Vre�
��V − Vre� �B10�

for V�Vth. Hence

P̂1 = �xx̂1�̂x + �̂e1�̂e + �refr̂1�̂sp. �B11�

Substituting for r̂1 from Eq. �B6� into Eq. �B11� yields

P̂1 = �xx̂1P̂x + �̂e1P̂e, �B12�

where now

P̂� = �̂� + �refr̂��̂sp �B13�

for �=e ,x. This redefinition of P̂� for the refractory case
brings the refractory modulated probability density �B12�
into the same symbolic form as for the nonrefractory case
�see Eq. �39�� and so Eq. �42� provides the modulation of the

gating variable x̂e1 with the refractory P̂�’s �Eq. �B13�� used
to calculated all terms except for the integral over the steady-
state distribution �the �1 /�x�0 term� for which Eq. �B5� is
used. The resulting x̂1 gives the firing-rate modulation �Eq.
�B6�� and subsequently allows for the full probability modu-
lation in Eq. �B11� to be found.

Figure 5 shows the steady-state and response properties,
generalized from Figs. 1�E� and 2�C�, for a neuron with a
spike shape. For this particular example the resonance is vis-
ibly more pronounced �Fig. 5�C��. This is a direct conse-
quence of the more detailed model of the spike �increased
time spent at higher voltages� interacting with the
depolarization-activated current.

5. Recurrent network for the refractory case

The network steady state for refractory neurons can be
calculated self-consistently from the population result, just as
was done for the nonrefractory case. The calculation of the
network response to modulation for refractory neurons is
marginally more involved but can again be written in terms
of a modulated population. The firing-rate modulation and
the probability density of neurons that are not currently re-
fractory are

r̂1 = �xx̂1r̂x + �̂i1r̂1�ir̂i + �̂e1r̂e, �B14�

�̂1 = �xx̂1�̂x + �̂i1r̂1�i�̂i + �̂e1�̂e, �B15�

where r̂� and �̂� �with �=e , i ,x� are calculated from solu-
tions to Eqs. �B8� and �B9�. The full modulated probability
density is

P̂1 = �xx̂1�̂x + �̂i1r̂1�i�̂i + �̂e1�̂e + �refr̂1�̂sp, �B16�

which on substitution of Eq. �B14� into the last term propor-
tional to �̂sp yields

P̂1 = �xx̂1P̂x + �̂i1r̂1�iP̂i + �̂e1P̂e. �B17�

Again, as for the refractory population, the redefinition of P̂�

�Eq. �B13�� with �=e ,x , i is used. The equations have now
been brought into a form identical to the nonrefractory case

�51� and hence Eqs. �54�–�56� can be used �with the P̂�’s for
neurons with a spike shape� to obtain the required r̂1.

APPENDIX C: MODEL PARAMETERS

1. One gating-variable GEM neuron

The model is defined in Eqs. �7� and �8� and features a
depolarization-activated hyperpolarizing current.

Capacitance: C=1 �F /cm2.
Leak current: gL=0.05 mS /cm2 and EL=−80 mV.
Spike-generating current Ispike: this is of the EIF form

with �T=2 mV, VT=−53 mV, Vre=−60 mV, and Vth
=0 mV. The reset is instantaneous for Figs. 1–3 whereas in
Fig. 5 a spike shape �Eq. �B3�� with linear repolarization
from threshold to reset was used with �ref =5 ms.

Voltage-activated current: gx=2gL, Ex=−80 mV,

x� =
1

1 + exp�− �V − Vx�/�x�
, �C1�

�x�V� = �x1 + �x2 exp�− �V − V��2/2��
2� , �C2�

where Vx=−50 mV, �x=5 mV, �x1=50 ms, �x2=20 ms,
V�=−50 mV, and ��

2=30 mV2. The activation x� and the
time constant �x are plotted in Fig. 1�B�.

2. Entorhinal cortex layer-II neuron

The model is adapted from Refs. �29,30� and features �see
Eq. �64�� a two-variable voltage-activated Ih current and an
instantaneously activated persistent sodium current.

Capacitance: C=1 �F /cm2.
Leak current: gL=0.078 mS /cm2, EL=−80 mV.
Spike-generating current Ispike: this is of the EIF form

�Eq. �6�� with �T=2 mV, VT=−53 mV, Vre=−60 mV, and
Vth=0 mV. A spike shape is included �Eq. �B3�� with a lin-
ear repolarization from threshold to reset lasting �ref =2 ms.

Persistent sodium current IP: ENa=87 mV and gP
=0.223gL. This current activates instantaneously with p� of
the form of Eq. �C1� with Vp=−50 mV and �p=4 mV.

Ih current: Eh=−20 mV, gf =0.815gL, and gs=0.441gL.
The gating variables f and s for the Ih obey the dynamics
given in Eq. �8�. The equilibrium value f�=� f / �� f +� f� and
time constants � f =1 / �� f +� f� for the fast component are de-
fined through � ,�= �aV+b� / �1−e�V+b/a�/k�, where for � f �a
=−2.89�10−3, b=−0.445, k=24.02� and for � f �a=2.71
�10−2, b=−1.024, k=−17.4�. The parameters for the slow
component are defined similarly through �s �a=−3.18
�10−3, b=−0.695, k=26.72� and �s �a=2.16�10−2;
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b=−1.065; k=−14.25�. The activation and the time constants
are all plotted in Fig. 4�B�.

3. Neuron with spike-frequency adaptation

The neuron is an adapted Traub-Miles model �9,32,33�
featuring voltage-activated and calcium-activated spike-
frequency adaptation currents given in Eq. �67�.

Capacitance: C=1 �F /cm2.
Leak current: gL=0.1 mS /cm2, EL=−67 mV.
Spike-generating current Ispike: this is of the EIF form

�Eq. �6�� with �T=2 mV, VT=−65 mV, Vre=−95 mV, and
Vth=40 mV. A spike shape is included �see Eq. �B3�� with a
linear repolarization from threshold to reset lasting �ref
=1 ms. The spike shape of the reduced model was chosen,

so that its effect on the adaptation currents was matched to
the continuous-spike model �9�.

IM current: defined in Eq. �68� where gM =80gL and EK
=−100 mV, with w obeying the dynamics of Eq. �8� with
�w=100 ms, and w� of the form of Eq. �C1� with Vw
=−20 mV and �w=5 mV.

Calcium current ICa: defined in Eq. �69� with gCa
=50gL and ECa=120 mV. The gating variable has instanta-
neous activation s� and is of the form of Eq. �C1� with Vs
=−25 mV and �s=5 mV.

Medium-after-hyperpolarization current ImAHP: Defined in
Eq. �70� with gmAHP=40gL and EK=−100 mV. The activa-
tion dynamics for �Ca2+� are found in Eq. �71� with �Ca
=80 ms being the remaining parameter to be specified. The
activation and time constants are all plotted in Fig. 4�H�.
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